

AGENDA

01
ENERGY TRANSITION

CONTEXT

02

SMARTSHIP & DIGITAL SOLUTIONS

03

HOW TO CREATE VALUABLE INSIGHTS FROM SHIP'S DATA?

04

BV'S MISSION, STRATEGY, NOTATIONS & DEVELOPMENTS 05

USV - NR461

ENERGY TRANSITION CONTEXT

ENERGY TRANSITION

WHAT COULD BE THE OPTIONS?

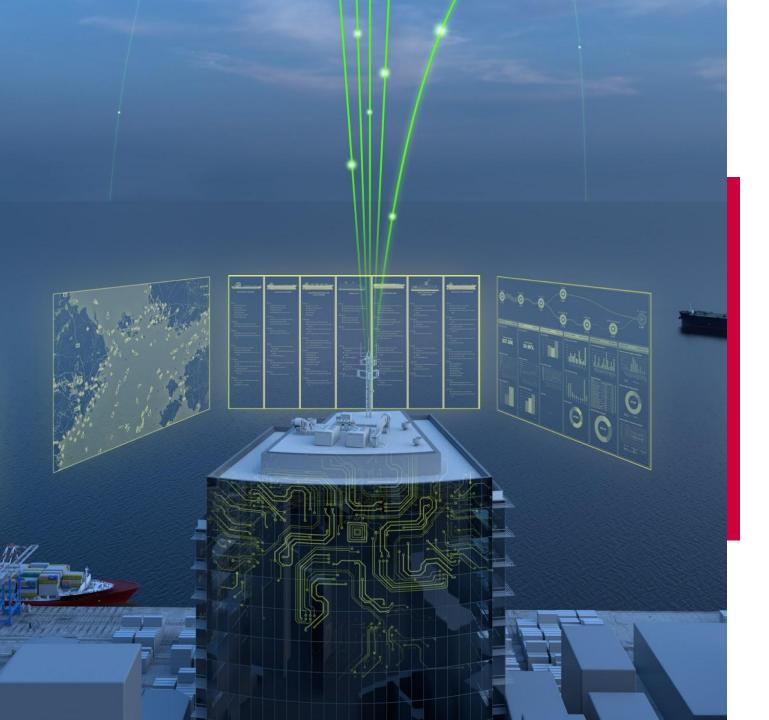
CAPEX driven

- 1 New / retrofitted hull design
 - Scale effect, vessel size
 - CFD & Hull shape
 - Air cavity lubrication
 - New anti-fouling

- New / retrofitted propulsion & power system
 - Waste heat recovery
 - Alternative fuels:
 LNG, Ammonia,
 Hydrogen fuel cell,
 Biofuels
 - Electric & Hybrid
 - Electronic Engine Control
 - Prop. Efficiency Devices
 - Freq. converters
 - Lights system

- Alternative sources of energy
 - Kite (WASP)
 - Fixed sails or wings
 - Solar panels
 - Sore power, cold ironing

OPEX driven

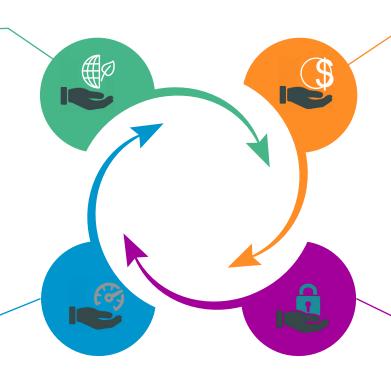

4 Speed limitation

optimization
Enabled by digitalization

- Engine Power Limitation (EPL)
- Engine de-rating
- Shaft Power Limitation (ShaPoLi)
- Voyage optimization
- Weather routing
- Just-in-time arrival
- Trim optimization
- Propeller/speed optimization
- Steam plant optimization
- Hull & propeller cleaning
- Power management optimization

02

SMARTSHIPS & DIGITAL SOLUTIONS


OUR UNDERSTANDING OF SHIP-OWNERS OBJECTIVES

BE MORE SUSTAINABLE

- Improve energy efficiency in operation
- Control & reduce waste generation
- Benchmark my ship performance

BE MORE EFFICIENT

- Improve connectivity
- Reduce reporting time
- Identify on-time the valuable data
- Improve data quality
 - Standardize data exchange formats Improve tracking and monitoring

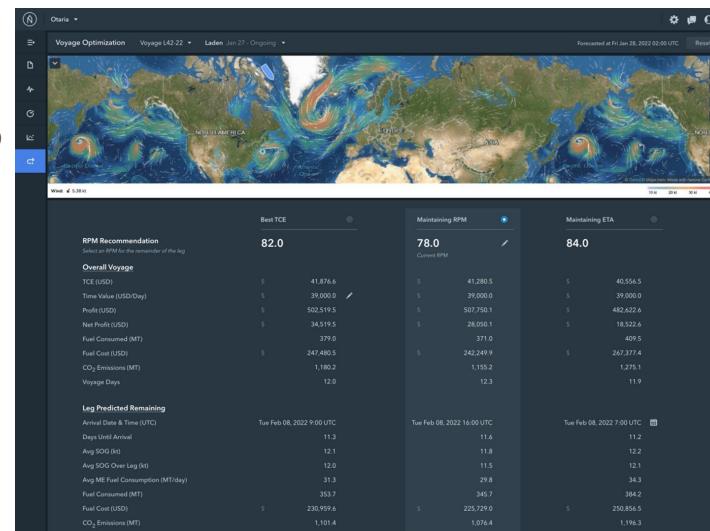
SAVE OPERATIONAL COSTS

- Through remote operations
- Through data driven optimizations
- Reduce machinery down-time and spare parts consumption through optimized and predictive maintenance
- Improve fleet utilization through better anticipation and planning

BE SAFE & SECURED

- Through robust IT infrastructure
- Through resilient software
- Through Cyber-security management and design

USE CASE: ROUTE PLANNING & WEATHER ROUTING



Data used:

- Ship characteritics
- Ship's loading conditions
- Weather forecast, waves & currents
- Engine & propeller conditions (E. Shaft Power, rpm, pitch)
- ECDIS
- AIS: ship's position, heading, speed
- Freight rate and bunker prices

Output

- Best route ponderated by selected criteria:
 - Limited risk on:
 - · Hull structure,
 - Cargo,
 - · Passenger comfort
 - Compliance with chartering contract
 - ETA
 - Engine power/RPM, Fuel consumption
 - TCE Time Charter Equivalent
- Real time data sharing

OTHER USE CASES

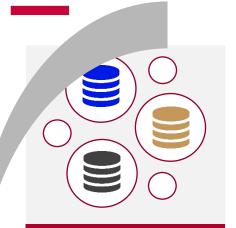
- Hull performance
- Optimized mach maintainance
- Fleet occupancy
- Power Management System
- Propeller pitch & shaft generator optimization for manoeuvring
- Cargo consumers optimization
- Liquid cargo heating system optimization (liquid tankers)
- BOG vs. sloshing optimization (LNG carriers)
- Just-in-time arrival
- Anti-collision assistance
- ...

LANDSCAPE OF SHIP PERFORMANCE DIGITAL SOLUTIONS

!Insight

NOT AT EVEN STAGE OF MATURITY...

opsealog



03

HOW TO CREATE VALUABLE INSIGHTS FROM SHIP'S DATA?

DATA DRIVEN MODEL

OF DIGITAL SOLUTIONS

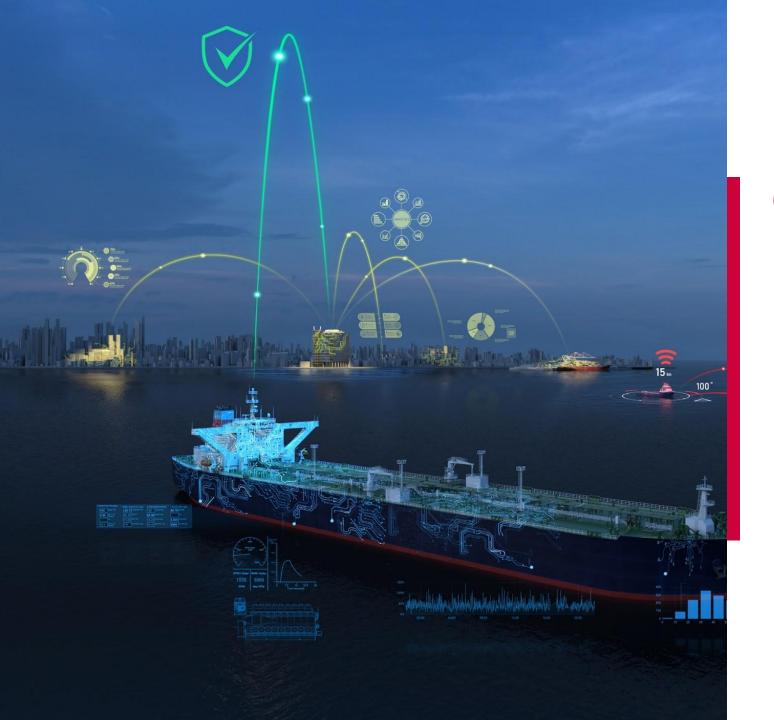
1 Data collection

... from multisources (FROM SHIP, FROM Company, from third parties)

- API & synch.
- Data hosting
- Data exchanges formats
- Data quality
- Data cleaning

- Data mining
- Data science
- Data analytics
- Al

- Customized dashboards
- ✓ Valuable insights
- ✓ Notifications & alerts
- ✓ Periodical reports
- Simulations & predictions
- Optimized scenarios



- ✓ Alerts
- ✓ Recommendations
- On-time actions

TRANSFORMING DATA INTO ACTIONS

BV'S MISSION
STARTEGY,
NOTATIONS
& DEVELOPMENTS

OUR SMART GROUPS FRAMEWORK

GROUP 1

COMPUTER BASED SHIPS

Covering the functional safety of computer based systems and digital solutions capturing data onboard

GROUP 2

CONNECTED SHIPS

Covering ship-to-shore data transfers, means of remote access to ship's data (data infrastructure) and cyber security

GROUP 3


AUGMENTED SHIPS

Covering the data driven operating models from shore, including ship monitoring, remote support and ship's efficiency optimisation for operational and environmental performance.

GROUP 4

AUTONOMOUS SHIPS

Covering the advanced functions needed for ships remotely operated from shore up to fully autonomous ships

OUR SMART() NOTATIONS FOLLOW A BI-DIMENSIONAL APPROACH

Additional Class notation { SMART (_ _)

Scope of the smart system

The scope of application of the smart function:

H for Hull

M for Machinery

MH for Machinery Health Monitoring

N for Navigation

EnE for Energy Efficiency

X for Special

Where is the data in the cycle?

The smart group designation

- 1 for Computer Based Ship
- 2 for Connected Ship
- 3 for Augmented Ship
- 4 for Remotely operated and Autonomous ship

OUR NEW NOTATIONS COMING IN JANUARY 2023

SMART(MH)

NR675 R02

SMART(EnE)

NR675 R02

SMART(X)

NR675 R02

DATA INFRA

NR467 R15

ASYNC-COM ASYNC-COM-R

NR467 R15

CII-REALTIME

NR467 R15

CYBER RESILIENT

NR659 R02

Roadmap development for 2023

Augmented ships SMART(_3), digital surveys, data quality, UR E26/27 integration in NR467

SMART() RULES ON-GOING DEVELOPMENTS

COMPUTER BASED SHIP

Existing notations (Hull, Navigation, Machinery)

Machinery Health Maintenance **MHM**

Energy Efficiency EnE

Special function

Eg. Sloshing monitoring

CONNECTED SHIP

DATA INFRASTRUCTURE

INTERNNAL CONNECTIVITY

CYBER SECURITY **A**UGMENTED SHIP

Remote monitoring & decision support from shore

(Remote controls excluded)

REMOTELLY OPERATED AND AUTONOMOUS

Manned with remote controls functions

Unmanned { USV

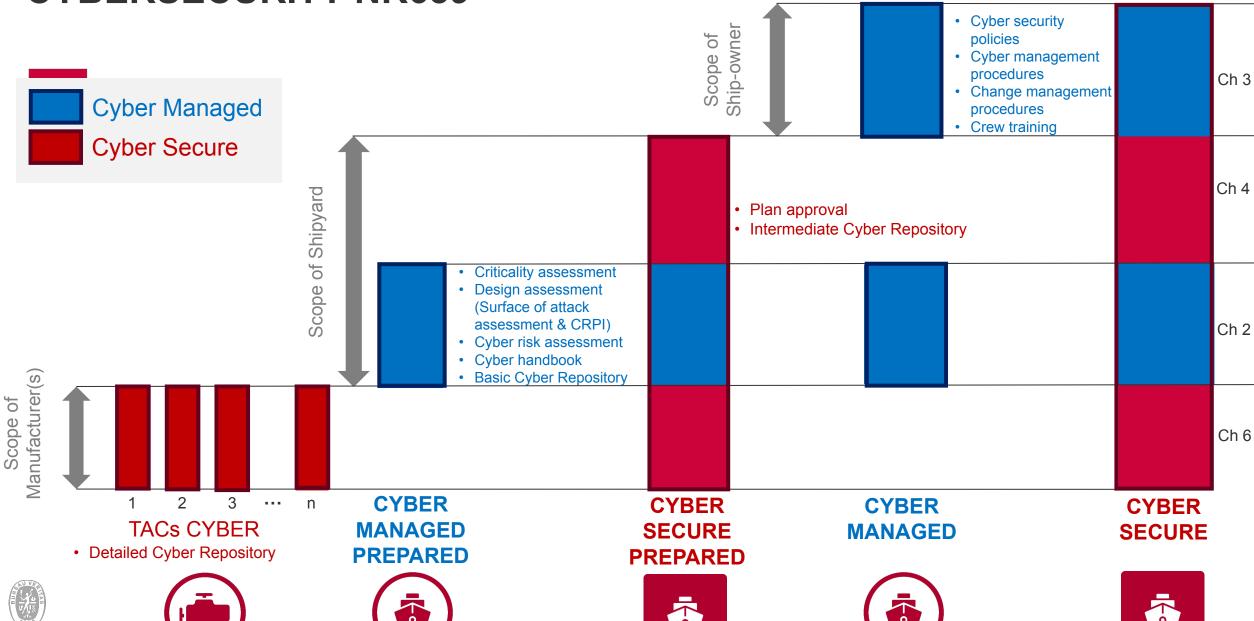
Autonomous vessel

CYBER RESILIENCE

CYBERSECURITY

AN INTEGRATED FAMILY OF NOTATIONS AND SERVICES

ISM READY


Cyber Managed = Ships in Service
Cyber Secure = New Constructions
Cyber Resilient = compliance with UR E26 (until 1st January 2024)

CYBERSECURITY NR659

Cyber ISM since **CYBERSECURITY NR659** 01/01/2021 NR 659 VS. ISM CYBER Cyber security Ship-owner Scope of policies Cyber management procedures Ch 3 Change management **Cyber Managed** procedures Crew training **Cyber Secure** Ch 4 of Shipyard Plan approval Intermediate Cyber Repository Criticality assessment Scope · Design assessment (Surface of attack assessment & CRPI) Ch 2 Cyber risk assessment Cyber handbook Manufacturer(s) Basic Cyber Repository Scope of Ch 6 **CYBER** 2 3 **CYBER** n **CYBER CYBER** TACs CYBER **MANAGED SECURE MANAGED SECURE** · Detailed Cyber Repository **PREPARED PREPARED** © 2021 B M&O

Cyber ISM since 01/01/2021 NR 659 **CYBERSECURITY NR659** VS. ISM CYBER VS. IACS CYBER-RESILIENCE Cyber security policies Ship-own Scope Cyber management procedures Ch 3 · Change management **Cyber Managed** procedures Crew training Cyber Secure IACS UR E26 Ch 4 Shipyard Plan approval IACS UR E26 Intermediate Cyber Repository of Criticality assessment Scope · Design assessment (Surface of attack assessment & CRPI) Ch 2 · Cyber risk assessment IACS UR E27 Cyber handbook Manufacturer(s) Basic Cyber Repository Scope of Ch 6 **CYBER CYBER CYBER CYBER** TACs CYBER **MANAGED SECURE MANAGED SECURE** Detailed Cyber Repository **PREPARED PREPARED** © 2021 B

05

NR681 USV

JULY 2022

NEW SERVICE NOTATION UNMANNED SURFACE VESSEL (USV) FOR CIVIL & NAVAL UNITS

Unmanned Surface Vessel (USV)

The service notation **USV** is assigned to unmanned surface units.

The type of service is to be specified after the service notation.

Example: USV / hydrographic survey ship

Example: USV / minehunter

The scope of application and the requirements for the assignment of the service notation **USV** are given in the Rule Note NR681.

SCOPE

- ☐ The scope of the service notation **USV** is limited to units with the following characteristics:
 - unmanned surface vessel (no human aboard)
 - less than 500 GT
 - built in **steel**, **aluminium**, or **composite** materials
 - with the following degrees of automation, direct control and remote control as defined in NI641 Sec1 Table 1 & 2:

A1 - DC0 - RC3 (human directed, no direct control, full remote control)

or

A2 - DC0 - RC2 (human delegated, no direct control, discontinuous remote control)

or

A3 - DC0 - RC1 (human supervised, no direct control, available remote control)

☐ Underwater vehicles & non-manoeuvring units, such as drifting buoys used for scientific research are out of scope

SCOPE

NI 641 Sec 1 Table 1

1	NI 641 Sec 1 Table 2
---	----------------------

Degree of automation		Manned	Definition	Definition Information Acquisition	Information Analysis	Authority to make decisions	Action initiated by	Degree of co		
11			Automated or manual operations are under human control.	Contant		decisions		-	DC0	No c
A0	Human operated	Yes	Human makes all decisions and controls all functions.	System Human	Human	Human	Human	Direct	DC1	Avai cont
A1	Human directed	Yes/No	Decision support: system suggests actions. Human makes decisions and actions.	System	System Human	Human	Human	control	DC2	Disc
A2	Human	Yes/No	System invokes functions. Human must confirm decisions.	System	System	Human	System		DC3	Full
delegated	egated	Human can reject decisions.	13.6.55322			3/3/3/3/		RC0	No r	
			Human is always informed of the decisions and actions.	System	System	System		Remote control	(cont
A3 Human supervis	Human supervised	Yes/No					System		RC1	Avai cont
									RC2	Disc
A4	Full automation	Yes/No	System invokes functions without informing the human, except in case of emergency. System is not expecting confirmation.	System	System	System	System			remo
									RC3	Full
			Human is informed only in case of emergency					(1) See	also [2	.8.3]:

Degree of control		of control	Human presence		
Direct control	DC0	No direct control	No crew available to monitor and control the system, nor to take control in case of warning or alert.	(1)	
	DC1	Available direct control	Crew available aboard, ready to take control in case of warning or alert But they may be not at the control station	Aboard	
	DC2	Discontinuous direct control	Monitoring may be discontinuous during a short period Crew always available at the control station, ready to take control	Aboard	
	DC3	Full direct control	System is actively monitored and controlled at any time	Aboard	
Remote control	RC0	No remote control	No operator available to monitor and control remotely the system, nor to take control in case of warning or alert.	(1)	
	RC1	Available remote control	Operators available in the RCC, ready to take control in case of warning or alert But they may be not at the remote control station	RCC	
	RC2	Discontinuous remote control	Remote monitoring may be discontinuous during a short period Operators always available at the remote control station, ready to take control	RCC	
	RC3	Full remote control	System is actively monitored and controlled remotely at any time	RCC	

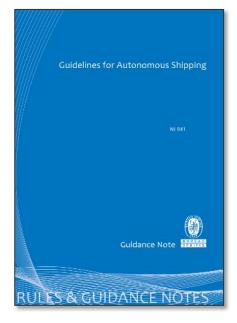
Characterisation according to NI641 Sec1 Table 1 & 2

A1 - DC0 - RC3 = human directed, no direct control (nobody on board), full remote control

A2 - DC0 - RC2 = human delegated, no direct control (nobody on board), discontinuous remote control

A3 - DC0 - RC1 = human supervised, no direct control (nobody on board), available remote control

GENERAL REQUIREMENTS FOR CIVIL UNITS


4.1.1 Civilian units

Unmanned surface civilian units assigned with the service notation **USV** are to comply with:

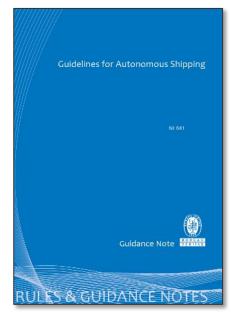
- a) the Rules for the Classification of Steel Ships NR467, Part A (Classification and Surveys),
- b) the present Rule Note Sec 1 to Sec 7,
- the Guidance Note NI641 for all matters related to classification.

NR681 **UNMANNED SURFACE VESSELS** (USV)

General Hull Scantlings and Structure Arrangement Section 2 Section 3 General Arrangement Design, Intact Stability and Hull Integrity Section 4 Machinery **Civil units** Section 5 Electricity Automation Section 6 Section 7 Fire Safety Section 8 Additional Requirements applicable to Naval Units

July 2022

GENERAL REQUIREMENTS FOR NAVAL UNITS


4.1.2 Naval units

Unmanned surface naval units assigned with the service notation **USV** are to comply with:

- a) the Rules for the Classification of Naval Ships NR483,
 Part A (Classification and Surveys),
- b) the present Rule Note Sec 1 to Sec 8,
- c) the Guidance Note NI641 for all matters related to classification.

NR681 UNMANNED SURFACE VESSELS (USV)

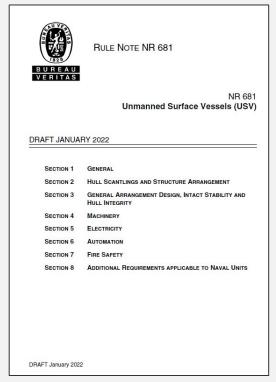
Section 1	General		
Section 2	Hull Scantlings and Structure Arrangement		
Section 3	General Arrangement Design, Intact Stability and Hull Integrity		
Section 4	Machinery		
Section 5	Electricity Naval units		
Section 6	Automation		
Section 7	Fire Safety		
Section 8	Additional Requirements applicable to Naval Units		

July 2022

REMOTELLY OPERATED AND AUTONOMOUS SHIPS

- Regulatory Scoping Exercise approved at MSC 103
- Next step: MASS Code to be completed by 2025

ISO-TC8/DTS 23860 Vocabulary related to autonomous ship projects (under development)



- Expert group in MASS
- Position paper revised in Oct. 2020

- · Unmanned Systems WG
- Memorundum June 2021

{ USV service notation

- < 500 GT
- No crew, no direct control onboard
- Including underwater vehicles, non-manoeuvring units like drifing buoys

NR681

EU Development Projects

TACs & AiP for units in operation

And many others (but confidential)...

SOME EXAMPLES OF OUR DELIVERABLES

KEY TAKE AWAYS

- It refers to digitalization
- It means a transformation
- It is not related to specific technologies but to operational improvements
- BV is offering SMART () notations suite to cover industry developments

SHAPING A WORLD OF TRUST

WWW.BUREAUVERITAS.COM

