

Projects in Spain SolWinHy Cádiz, SolarHy Córdoba & Bolson Linares

Dr. José Luis Morán Director – Integrated Energy Solutions <u>jl.moran@viridire.com</u> | M +34 606 344 994

Viridi RE & Green Enesys

[Image: Shutterstock]

STORAGE

About the project developers

Viridi RE and Green Enesys

15-year success story in the field of renewable energy

Many years of experience in the development and construction of outdoor **PV systems**

Together, the two companies have developed, financed and partially built over **500 MWp** of PV projects over the past 10 years

Experience in the field of **hydrogen-based** technologies

Current project pipeline: 2.2 GWp of PV projects in Spain and approximately 7 GWp worldwide.

Headquarters in **Germany**; Offices in **Spain**, **Italy** and **Switzerland**

Context

German and EU hydrogen strategies

- **Strategic role of hydrogen.** To meet the climate target of full decarbonisation by 2050 hydrogen needs to be produced with renewable energy (green hydrogen).
- Germany: 10 GW by 2030 (KoaV), Hydrogen Strategies foresees demand of up to 110 TWh/year → up to 70% of hydrogen must be imported.
- EU target raised from 10 million t to 20 million t of green hydrogen in 2030 (Hydrogen Accelerator presented 8 March).
- EU Member States in the South of Europe offer opportunities for cost-efficient production of hydrogen due a combination of stable framework conditions and excellent solar conditions ("hydrogen clusters").
- Lack of enough renewable resources in South of Germany to cover its needs
- Transport of hydrogen is a challenge.

Why Methanol

The choice for methanol was made based on a mix of **strategic and practical considerations:**

- Methanol can be used in a variety of applications: As a basis for producing lowcarbon fuel (blending / synthetic fuel) or as feedstock for other products, including in the chemical industry
- Methanol has a high density of hydrogen per each carbon unit
- Production of methanol cost efficient also for low synthesis rates

Development projects

SolWinHy Cádiz

The project aims at producing yearly from end 2025

- 5 700 tons of hydrogen to be processed to
- **30 000 tons** of green methanol

SolarHy Cordoba

The project aims at producing yearly from mid 2026

- 6 000 tons of hydrogen to be processed to
- **31 000 tons** of green methanol

Bolson Linares

The project aims at producing yearly from mid 2027

- 8 000 tons of hydrogen to be processed to
- 44 000 tons of green methanol

SolWinHy Cádiz

[Image: Shutterstock]

HYDROGEN

ENERGY STORAGE

Power generation & hydrogen production

PV plant: 126 MWp
Wind Farm: 60 MW
Location: Arcos de la Frontera
Electricity generation: 376 GWh/year

LCOE: 3,0 c/kWh (weighted average)

Products: The green hydrogen will be converted into 30 000 t/year of green e-methanol by combining H₂ with CO₂

CO₂: Biogenic CO₂ captured from a biomass power plant (liquified and transported)

No grid connection: hydrogen is generated exclusively from solar and wind power, no impact on the national grid

Hydrogen production: 5 700 t/year

Electrolyser: PEM 70 MW

Oxygen: As a by-product, 45 000 t of oxygen will be produced per year.

areen enesvs

Water ponds (Evaporation and Storage)

Water pipe from the Municipal WWTP (Waste Water Treatment Plant)

Process Plant

Wind Farm

PV Plant

Interconnection Line

Plant lay-out

Plant lay-out

Water ponds

Process Plant

Wind Farm

PV Plant

Interconnection Line

General disposition -Process plant location

Hydrogen projects in Spain - Confidential

Layout process area

Weekly e-Methanol production

Weekly Methanol Production

nyulogen plojects in spain - connuentia

14

CAPEX	210.000.000

Yearly OPEX (without financial costs)					
0&M	4.250.000				
Consumables (CO2, water, etc)	3.250.000				
Levelized overhaul	1.250.000				
Transport	2.400.000				
Others	410.000				
TOTAL	11.560.000				

Project Economics

Timeline & Financing

 Financing (debt and equity) will be structured and organised by Viridi and Green Enesys.

Environmental Impacts and Carbon Footprint

CO₂ and Water

CO₂

- CO₂ reduction > 70% (compared to fossil benchmark)
- Green methanol considered (RED II): "Renewable Fuel of Non-Biological Origin" (RFNBO)
- Estimated CO₂ savings per year: 95 000 t CO₂ /year

Water consumption

- Water consumption: **110 000 t/year** (= average consumption of 1,500 people).
- Water will be supplied from a local Waste Water Treatment Plant.
- Water as by-product from methanol production will be used for production of $H_2 \rightarrow 20\%$ water consumption saving
- A storage dam on-site is foreseen to stabilize water demand

Transport, Off Take, Outlook & Partners

[Image: Shutterstock]

NERGY STORAGE

Transport

 Green methanol (liquid) will be transported from Arcos de la Frontera, Córdoba and Linares to Karlsruhe by train.

 Strategic location with a direct train connection with the rest of Europe and proximity to existing chemical complexes and ports.

- The requirements for rail transport was evaluated with DB Cargo BTT.
- A logistical concept was developed

 Proximity to the existing Spanish gas transmission system and the **future hydrogen transport** infrastructure.

Train Station hub in Córdoba

Córdoba

Methanol transported in electric trucks from all projects in Andalucía

5 wagons loading

Off-Take

ReFuels Baden-Württemberg

- The Ministry of Transport of Baden-Württemberg supports the project in the context of the project "reFuels – Rethinking Fuels".
- The reFuels project plans to establish a pilot project for the production of green e-fuels at a refinery in Baden Württemberg. Annual production of re-fuels 50 000 t/year
- Intention to scale up the production of green e-Fuels to 500 000 t/year (refuels RoadMap Baden Württemberg)

Partners

DB Cargo BTT: transport by train to Germany

- Renfe
- Adif

Main suppliers

PV plant

• KACO new energy: inverters for the PV plant

Hydrogen generation:

• Siemens Energy: electrolyser

Methanol production

BSE Methanol: technology to produce methanol

Technological centers

- German Aerospace Centre (DLR)
- Fraunhofer IEG
- Universidad Politécnica de Madrid (UPM -ETSIN)

renfe Dadif

DB Cargo

Projects pipeline

Based on the development of the projects in Cadiz, Cordoba and Linares, we aim to scale up the green hydrogen project pipeline in Spain, reaching **2 GW** renewable power capacity by 2028

	COD	Electrolyzer (MW)	Renewables (MW)	Methanol production
SolWinHy Cádiz	2025	70	126 PV + 60 Wind	30.000 t/y
SolarHy Córdoba	2026	105	200 PV	31.000 t/y
Bolson Linares	2027	140	300 PV	44.000 t/y
SolarCemHy Toledo	2028	140	300 PV	44.000 t/y
SolEoHy CLM	2029	455	1000 PV + 200 Wind	200.000 t/y

Viridi RE GmbH

Bismarckstraße 102 74074 Heilbronn Germany Viridi Energías Renovables España, S.L. Calle Málaga 5 28320 Pinto (Madrid) Spain

Viridi Energia Rinnovabile Italia S.R.L. Via Antoniana 220/E 35011 Campodarsego (PD) Italy

Green Enesys Deutschland GmbH Schlüterstraße 54 10629 Berlin Germany